NOM : Prénom :

Devoir surveillé n°1 - Mathématiques - Correction

Exercice 1. (5 points)

Pour tout $x \in \mathbb{R}$, on pose $P(x) = x^3 + 3x^2 + x - 5$.

- 1. Vérifier que $x_0 = 1$ est une racine de P(x). $P(x_0) = 1 + 3 + 1 5 = 0$, donc 1 est bien une racine de P(x).
- 2. En déduire une factorisation de P(x) par division euclidienne. $P(x) = (x-1)(x^2+4x+5)$.
- 3. Résoudre l'inéquation $P(x) \ge 0$ (E_1) .

x	$-\infty$	1		$+\infty$
x-1	_	0	+	
$x^2 + 4x + 5$	+		+	
P(x)	_	0	+	

L'ensemble des solutions de (E_1) est $[1; +\infty[$.

On considère l'inéquation

$$2\ln(x) + \ln(x+3) \geqslant \ln(5-x)$$
 (E₂).

- 4. Déterminer le domaine de définition de (E_2) . Domaine de définition de $(E_2): x > 0$ et x + 3 > 0 et 5 - x > 0 c'est-à-dire $x \in]0; 5[$.
- 5. Résoudre (E_2) .

Soit $x \in]0; 5[$,

$$(E_2) \iff \ln(x^2) + \ln(x+3) \geqslant \ln(5-x)$$

$$\iff \ln(x^2(x+3)) \geqslant \ln(5-x)$$

$$\iff x^3 + 3x^2 \geqslant 5 - x$$
(car exp est strictement croissante sur \mathbb{R})
$$\iff P(x) \geqslant 0.$$

L'ensemble des solutions de (E_2) est [1;5] d'après Q3 et Q4.

Exercice 2. (5 points) Pour tout $x \in \mathbb{R}$, on pose

$$P(x) = 4x^2 - 7x - 2.$$

6. Compléter l'assertion suivante : x_1 et x_2 sont les racines du polynôme P(x) si et seulement si

$$x_1 + x_2 = -\frac{b}{a} = \frac{7}{4}$$
 et $x_1 \times x_2 = \frac{c}{a} = \frac{-2}{4} = -\frac{1}{2}$.

7. Résoudre dans \mathbb{R} l'équation P(x) = 0 (E_3) . Vérifier son résultat.

NOM:

Prénom:

Ici $\Delta = b^2 - 4ac = 81 > 0$. P(x) admet donc deux racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = -\frac{1}{4}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = 2$.

On a bien
$$x_1 + x_2 = -\frac{1}{4} + 2 = \frac{-1+8}{4} = \frac{7}{4} \checkmark$$
 et $x_1 \times x_2 = -\frac{1}{4} \times 2 = -\frac{1}{2} \checkmark$.

8. Factoriser le polynôme P(x).

$$P(x) = 4\left(x + \frac{1}{4}\right)(x - 2).$$

9. Résoudre dans \mathbb{R} l'équation

$$4x^4 - 7x^2 - 2 = 0. \quad (E_4)$$

On a

$$(E_4) \iff 4X^2 - 7X - 2 = 0$$
 avec $X = x^2$
 $\iff X = -\frac{1}{4}$ ou $X = 2$ d'après Q7
 $\iff x^2 = -\frac{1}{4}$ ou $x^2 = 2$
 $\iff x = -\sqrt{2}$ ou $x = \sqrt{2}$.

L'ensemble des solutions de (E_4) est $\{-\sqrt{2}; \sqrt{2}\}$.

10. Résoudre dans \mathbb{R} l'inéquation

$$4e^{2x} - 7e^x - 2 < 0. \quad (E_5)$$

On a

$$4e^{2x} - 7e^x - 2 < 0 \iff 4X^2 - 7X - 2 < 0 \qquad \text{avec } X = e^x$$

$$\iff 4\left(X + \frac{1}{4}\right)(X - 2) < 0 \qquad \text{d'après Q8}$$

$$\iff 4\left(e^x + \frac{1}{4}\right)(e^x - 2) < 0$$

$$\iff e^x - 2 < 0 \qquad \text{car } 4\left(e^x + \frac{1}{4}\right) > 0$$

$$\iff e^x < 2$$

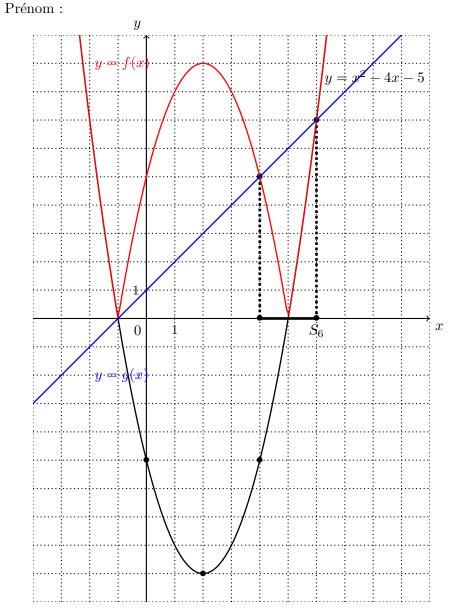
$$\iff x < \ln(2).$$

L'ensemble des solutions de (E_5) est $]-\infty; \ln(2)[$

Exercice 3. (6 points) Pour tout $x \in \mathbb{R}$,

$$f(x) = |x^2 - 4x - 5|$$
 et $g(x) = x + 1$.

NOM:



11. Dresser le tableau de signes de $x^2 - 4x - 5$.

x	$-\infty$		-1		5		$+\infty$
$x^2 - 4x - 5$		+	0	_	0	+	

- 12. Sur le graphique, représenter la fonction f(x) en rouge (valeur absolue) et la fonction g(x) en bleu. cf. graphique
- 13. En déduire l'ensemble des solutions de l'inéquation

$$f(x) < g(x), \quad (E_6)$$

c'est-à-dire

$$|x^2 - 4x - 5| < x + 1$$
 (E₆).

On trouve graphiquement que l'ensemble des solutions de (E_6) est]4;6[.

14. Retrouver ce résultat par le calcul (disjonction de cas). Si $x \leqslant -1$ ou $x \geqslant 5$: alors

$$(E_6) \iff x^2 - 4x - 5 < x + 1$$

 $\iff x^2 - 5x - 6 < 0$ (tableau de signes)
 $\iff x \in]-1, 6[$

donc $\mathcal{S}_1 = [5; 6[$. Si $-1 \le x \le 5$:

$$(E_6) \iff -x^2 + 4x + 5 < x + 1$$

$$\iff 0 < x^2 - 3x - 4 \qquad \text{(tableau de signes)}$$

$$\iff x \in]-\infty; -1[\cup]4; +\infty[$$

donc $\mathscr{S}_2 =]4;5]$. Conclusion: L'ensemble des solutions de (E_6) est

NOM:

Prénom:

$$\mathscr{S} = \mathscr{S}_1 \cup \mathscr{S}_2 =]4;6[$$

Exercice 4. (4 points) Soit $m \in \mathbb{R}$. On note f la fonction définie sur \mathbb{R} par

$$f(x) = x^2 - (m+1)x + 4.$$

15. Pour quelle(s) valeur(s) de m l'équation f(x) = 0 a-t-elle une unique solution?

Calculer alors cette racine.

- 16. Pour quelle(s) valeur(s) de m l'équation f(x) = 0 n'a-t-elle aucune solution?
- 17. Pour quelle(s) valeur(s) de m l'équation f(x) = 0 a-t-elle deux solutions réelles (distinctes) strictement positives?
- 18. Pour quelle(s) valeur(s) de m l'équation f(x) = 0 a-t-elle deux solutions entières?
- 15. L'équation f(x) = 0 a une unique solution
 - si et seulement si $\Delta = 0$,
 - si et seulement si $(m+1)^2 16 = 0$,
 - si et seulement si (m-3)(x+5)=0,
 - si et seulement si m = 3 ou m = -5.

Lorsque m=3: l'unique solution est $x_0=-\frac{b}{2a}=\frac{m+1}{2}=2.$

Lorsque m = -5: l'unique solution est $x_0 = -2$.

- 16. L'équation f(x) = 0 n'a aucune solution ssi $\Delta < 0$ ssi (m-3)(m+5) < 0 ssi $m \in]-5,3[$.
- 17. L'équation f(x) = 0 a deux solutions distinctes ssi $\Delta > 0$ ssi m < -5 ou m > 3.

Dans ce cas, $x_1 + x_2 = m + 1$ et $x_1 \times x_2 = 4$ (relations coefficients/racines).

Les racines sont donc de même signe $(x_1 \times x_2 \text{ positif})$ et strictement positives lorsque m+1>0, c'est-à-dire lorsque m>-1.

Ainsi l'équation f(x) = 0 a deux solutions distinctes strictement positives lorsque m > 3.

18. Supposons que l'équation f(x) = 0 admette des solutions entières. Dans ce cas, $x_1 + x_2 = m + 1$ et $x_1 \times x_2 = 4$.

Les seuls couples d'entiers possibles pour (x_1, x_2) sont alors :

$$(1,4), (4,1), (2,2), (-2,-2), (-1,-4)$$
 ou $(-4,-1)$.

Dans ce cas, $m=x_1+x_2-1$, c'est-à-dire $m=4,\ m=4,\ m=3,$ $m=-5,\ m=-6$ ou m=-6.

Réciproquement, lorsque $m \in \{-6, -5, 3, 4\}$, les solutions de f(x) = 0 sont bien entières.

Conclusion : L'équation f(x) = 0 admet des solutions entières si et seulement si $m \in \{-6, -5, 3, 4\}$.