Programme de colles n°4

Du 06/10 au 10/10

Reprise du programme de colles précédent :

Les fonctions trigonométriques

Nouveau : Calcul de limites et de dérivées - Études de fonctions

- ♦ Limites usuelles
- ♦ Limites d'une somme, d'un produit, d'un quotient
- ♦ Limites d'une fraction rationnelle aux bornes de son domaine de définition et interprétation graphique
- ♦ Composée de deux fonctions Limite d'une fonction composée
- ♦ Théorème d'encadrement (limite finie) Théorème de comparaison (limite infinie)
- ♦ Croissances comparées
- \blacklozenge Utilisation de l'expression conjuguée pour lever les formes indéterminées du type $\sqrt{a}\pm\sqrt{b}$:

$$\sqrt{a} \pm \sqrt{b} = \frac{a-b}{\sqrt{a} \mp \sqrt{b}}$$
 et $\frac{1}{\sqrt{a} \pm \sqrt{b}} = \frac{\sqrt{a} \mp \sqrt{b}}{a-b}$.

- lacktriangle Définition du nombre dérivé de f en a Taux d'accroissement
- ullet Équation de la tangente à \mathscr{C}_f au point d'abscisse a
- ♦ Dérivées usuelles
- ♦ Dérivées et opérations (somme, multiplication par un scalaire, produit, quotient)
- ♦ Dérivée d'une composée

Documents utilisés en classe

Cours: cours3.pdf

TD:TD3.pdf

Questions de cours & Applications

Question 1. La fonction cosinus (représentation graphique et dérivée) - Formules de factorisation : $\cos(p) \pm \cos(q)$.

Exercice : Calculer les limites aux bornes du domaine de définition :

$$f(x) = \frac{3x - 1}{x^2 - 2x + 1}$$

et interpréter graphiquement ces limites.

Question 2. La fonction sinus (représentation graphique et dérivée) - Formules de factorisation : $\sin(p) \pm \sin(q)$.

Exercice : Calculer les limites aux bornes du domaine de définition :

$$f(x) = \frac{2x^2 - 3x + 1}{x^2 - 2x + 1}$$

et interpréter graphiquement ces limites.

Question 3. La fonction tangente (définition, représentation graphique et dérivée) - Formules : $\cos(a \pm b)$, $\sin(a \pm b)$, $\cos(2a)$ et $\sin(2a)$.

Exercice: Calculer les limites suivantes

$$\lim_{x\to +\infty} \sqrt{x+1} - \sqrt{x} \quad \text{et} \quad \lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}.$$

Question 4. 4 dérivées usuelles + Équation de la tangente à \mathcal{C}_f au point d'abscisse a.

Exercice : Soit $f(x) = \frac{\ln(x)}{x}$.

- (1) Calculer les limites aux bornes du domaine de définition de la fonction f.
- (2) Déterminer l'équation de la tangente à \mathscr{C}_f au point d'abscisse x = e.

Question 5. Formule « Dérivée de f(u(x)) » + Cas particuliers dérivées de $u(x)^n$, $\sqrt{u(x)}$, $e^{u(x)}$, $\ln(u(x))$, $\sin(u(x))$ et $\cos(u(x))$.

Exercice : Déterminer le domaine de définition, l'expression de la dérivée ainsi que le domaine de dérivabilité des fonctions suivantes :

$$f(x) = \sqrt{x^2 - 3x + 2}$$
 et $g(x) = \ln(1 - x^2)$.