Programme de colles n°5

Du 13/10 au 17/10

Reprise du programme de colles précédent : Calcul de limites et de dérivées Nouveau : Calcul de primitives

- lacktriangle Définition du nombre dérivé de f en a Taux d'accroissement
- lackloss Équation de la tangente à \mathscr{C}_f au point d'abscisse a
- ♦ Dérivées usuelles
- ♦ Dérivées et opérations (somme, multiplication par un scalaire, produit, quotient)
- ♦ Dérivée d'une composée
- lacktriangle Définition «F(x) est une primitive de f(x) sur l'intervalle I»
- ♦ Primitives usuelles
- ♦ Primitives et opérations
- ♦ Calcul d'intégrales
- ♦ Formule d'intégration par parties :

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx$$

Documents utilisés en classe

Cours: cours 3.pdf

TD:TD3.pdf

Questions de cours & Applications

Question 1. 4 dérivées usuelles + Définition du nombre dérivé de f en a + Équation de la tangente à \mathscr{C}_f au point d'abscisse a.

Exercice: Soit $f(x) = \frac{\ln(x)}{x}$.

- (1) Calculer les limites aux bornes du domaine de définition de la fonction f.
- (2) Déterminer l'équation de la tangente à \mathcal{C}_f au point d'abscisse e.

Question 2. 4 primitives usuelles + Formule d'intégration par parties.

 ${\bf Exercice: Calculer}$

$$I = \int_0^1 (2x+1)e^x \, \mathrm{d}x$$

ou

$$J = \int_{1}^{e} \ln(x) \, \mathrm{d}x.$$

Question 3. Énoncés : théorèmes d'encadrement ou de comparaison.

Exercice : Déterminer la limite en $+\infty$ de $f(x)=x^2-x\cos(x)$ ou déterminer la limite en $-\infty$ de $g(x)=\frac{\sin(x)}{x}$.

Question 4. Formule « Dérivée de f(u(x)) » + Cas particuliers dérivées de $u(x)^n$, $\sqrt{u(x)}$, $e^{u(x)}$, $\ln(u(x))$, $\sin(u(x))$ et $\cos(u(x))$.

Exercice : Soit $f(x) = \frac{1}{x^2 - 1}$.

- 1. Déterminer le domaine de définition D_f de f.
- 2. Montrer qu'il existe a et b des réels tels que

$$f(x) = \frac{a}{x-1} + \frac{b}{x+1}$$
 pour tout $x \in D_f$.

3. En déduire l'expression d'une primitive de f sur l'intervalle] -1,1[.