Programme de colles n°6

Du 03/11 au 07/11

Reprise du programme de colles précédent : Limites, dérivées et primitives (et notamment IPP) Nouveau cette semaine : Calcul algébrique

Contenu

Notations et règles de calcul.

Factorielle, coefficients binomiaux.

Les expressions de $\binom{n}{0}$, $\binom{n}{1}$, $\binom{n}{2}$ sont à connaître.

Triangle de Pascal. Formule du binôme de Newton.

Formules à connaître : Soient m,n deux entiers naturels tels que $m \leq n$ et q un nombre complexe différent de 1 :

$$\sum_{k=m}^{n} 1 = n - m + 1$$

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1}$$

Capacités & commentaires

Effectuer un changement d'indice. Sommes et produits télescopiques. L'objectif est de faire acquérir aux étudiants une aisance dans la manipulation des symboles Σ et Π sur des exemples de difficulté raisonnable.

Documents utilisés en classe

Cours: cours4.pdf - TD: TD4.pdf

Questions de cours

Question 1. Formule de $\sum_{k=0}^{n} k$ et démonstration (récurrence).

Question 2. Formule de $\sum_{k=0}^{n} k^2$ et démonstration (récurrence).

Question 3. Formule de $\sum_{k=0}^{n} q^k$ et démonstration dans le cas $q \neq 1$ (récurrence).

Question 4. Définitions n! et $\binom{n}{p}$ - Formule du binôme de Newton.

Application numérique : Développer une expression du type $(a + b)^n$ avec a, b, n donnés et calculer un coefficient binomial.

Question 5. Énoncer une des trois propriétés et la démontrer :

• Symétrie : Pour tous $n, p \in N$,

$$\binom{n}{p} = \binom{n}{n-p}.$$

• Formule de factorisation : Pour tous $n, p \in N^*$,

$$\binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}.$$

• Formule de Pascal : Pour tous $n, p \in N$,

$$\binom{n}{p-1} + \binom{n}{p} = \binom{n+1}{p}.$$