Feuille d'exercices n°2 - Correction Fonctions usuelles

Fonctions logarithmes, exponentielles et puissances

Exercice 1. 1. Simplifier les écritures suivantes :

(1)
$$e^{\ln 3} = 3$$

(2)
$$\frac{e^{3+\ln 8}}{e^{2+\ln 4}} = 2e$$

(3)
$$\ln 3 + \ln \frac{1}{3} = 0$$

(4)
$$\frac{1}{2} \ln \sqrt{2} = \frac{1}{4} \ln(2)$$

(5)
$$e^{\ln(x-1) + \ln x} = x^2 - x$$

(6)
$$\ln(e^{\frac{1}{x}}) + e^{-\ln x} = \frac{2}{x}$$

(7)
$$2\sqrt{20} - \sqrt{45} + \sqrt{125} = 6\sqrt{5}$$

(8)
$$2\sqrt{32} - 3\sqrt{50} + 6\sqrt{8} = 5\sqrt{2}$$

(9)
$$(2\sqrt{2} - \sqrt{5})(\sqrt{2} + \sqrt{5}) = \sqrt{10} - 1$$

$$(10) \ \frac{\sqrt{6}}{\sqrt{3} - \sqrt{2}} + \frac{3}{\sqrt{3} + \sqrt{2}} = 5\sqrt{3}$$

2. Exprimer les nombres suivants en fonction de ln 2 et ln 5 :

(1)
$$\ln 50 = \ln 2 + 2 \ln 5$$

(2)
$$\ln \frac{16}{25} = 4 \ln 2 - 2 \ln 5$$

(3)
$$\ln 250 = \ln 2 + 3 \ln 5$$

3. Démontrer que :
$$\ln(2+\sqrt{3}) + \ln(2-\sqrt{3}) = 0$$
.

$$\ln(2 + \sqrt{3}) + \ln(2 - \sqrt{3}) = \ln((2 + \sqrt{3})(2 - \sqrt{3}))$$

$$= \ln(2^2 - \sqrt{3}^2)$$

$$= \ln 1$$

$$= 0.$$

Exercice 2. Résoudre dans \mathbb{R} les équations et inéquations suivantes après avoir déterminé leur domaine de validité :

(1)
$$ln(2-2x)=1$$

(2)
$$\ln(x^2 - 8) = 0$$

(3)
$$e^{x+2} = 3$$

(4)
$$(e^x + 1)(e^x - 4) = 0$$

(5)
$$\ln(3x-4) = \ln(x^2-4)$$
 (6) $\ln(2x-1) > -1$

(6)
$$\ln(2x-1) > -$$

(7)
$$e^{\frac{x+1}{x}} > 3$$

(7)
$$e^{\frac{x+1}{x}} > 3$$
 (8) $\ln(x-2) \le \ln(2x-1)$
(9) $\ln\left(1 + \frac{2}{x}\right) \ge \ln x$ (10) $e^{2x} < 2e^x$

(9)
$$\ln \left(1 + \frac{2}{\pi}\right) \ge \ln x$$

$$(10) e^{2x} < 2e^{x}$$

$$(11) e^{4x} - 3e^{2x} - 4 = 0$$

(12)
$$\ln(5-x) - \ln 3 + \ln(x-1) \ge 0$$

On note \mathcal{D} le domaine de validité de l'équation ou l'inéquation considérée et $\mathscr S$ son ensemble de solutions.

(1)
$$\mathscr{D} =]-\infty; 1[$$
 et $\mathscr{S} = \{1-\frac{e}{2}\}.$

(2)
$$\mathscr{D} = \left] -\infty; -2\sqrt{2} \right[\cup \left] 2\sqrt{2}; +\infty \right[\text{ et } \mathscr{S} = \{-3; 3\}.$$

(3)
$$\mathscr{D} = \mathbb{R}$$
 et $\mathscr{S} = \{\ln(3) - 2\}.$

(4)
$$\mathscr{D} = \mathbb{R}$$
 et $\mathscr{S} = \{\ln 4\}$.

(5)
$$\mathcal{D} = [2; +\infty[$$
 et $\mathcal{S} = \{3\}.$

(6)
$$\mathscr{D} = \left] \frac{1}{2}; +\infty \right[\text{ et } \mathscr{S} = \left] \frac{4e+1}{3e}; +\infty \right[.$$

(7)
$$\mathscr{D} = \mathbb{R}^* \text{ et } \mathscr{S} = \left[0; \frac{1}{\ln(3) - 1}\right[.$$

(8)
$$\mathscr{D} =]2; +\infty[$$
 et $\mathscr{S} =]2; +\infty[$.

(9)
$$\mathscr{D} = [0; +\infty[$$
 et $\mathscr{S} = [0; 2].$

(10)
$$\mathscr{D} = \mathbb{R} \text{ et } \mathscr{S} =]-\infty; \ln 2[.$$

(11)
$$\mathscr{D} = \mathbb{R}$$
 et $\mathscr{S} = \{\ln 2\}$.

(12)
$$\mathcal{D} = [1; 5]$$
 et $\mathcal{S} = [2; 4]$.

Exercice 3. Soit $x \in \mathbb{R}^{+\star}$. On pose $a = \exp(x^2)$ et $b = \frac{1}{x} \ln \left(x^{\frac{1}{x}} \right)$. Simplifier l'expression a^b .

$$a^{b} = e^{b \ln(a)}$$

$$= e^{\frac{1}{x} \ln\left(x^{\frac{1}{x}}\right) \ln\left(\exp(x^{2})\right)}$$

$$= e^{\frac{1}{x} \ln\left(x^{\frac{1}{x}}\right) \cdot x^{2}}$$

$$= e^{\frac{1}{x} \cdot \frac{1}{x} \cdot \ln(x) \cdot x^{2}}$$

$$= e^{\ln(x)}$$

$$= x.$$

Exercice 4. Pour tout $x \in \mathbb{R}$, on pose

$$P(x) = 2x^3 + 5x^2 + x - 2.$$

1. Résoudre dans \mathbb{R} l'inéquation $P(x) \leq 0$.

- 2. En déduire l'ensemble des solutions de l'inéquation : $2 \ln x + \ln(2x+5) \le \ln(2-x)$.
- 1. $P(x) = (x+1)(2x^2 + 3x 2)$ En dressant un tableau de signe, on obtient : $\mathscr{S} =]-\infty; -2[\cup[-1;\frac{1}{2}].$
- 2. Le domaine de validité de cette inéquation est]0; 2[. Soit $x \in]0; 2[$,

$$2\ln x + \ln(2x+5) \leqslant \ln(2-x) \iff \ln(x^2(2x+5)) \leqslant \ln(2-x)$$

$$\iff x^2(2x+5) \leqslant 2-x$$

$$\iff P(x) \leqslant 0$$

$$\iff x \in]-\infty; -2[\cup \left[-1; \frac{1}{2}\right]$$

Ainsi l'ensemble des solutions de l'inéquation considérée est $\left[0;\frac{1}{2}\right]$.

2 Fonctions trigonométriques

Exercice 5. Trouver les mesures principales, puis les valeurs exactes du sinus et du cosinus des angles suivants :

1.
$$\frac{7\pi}{6}$$
 2. $\frac{4\pi}{3}$ 3. $\frac{71\pi}{3}$ 4. $-\frac{107\pi}{4}$ 5. $-\frac{13\pi}{6}$ 6. $\frac{130\pi}{7}$

1.
$$-\frac{5\pi}{6}$$
 2. $-\frac{2\pi}{3}$ 3. $\frac{5\pi}{3}$ 4. $-\frac{3\pi}{4}$ 5. $-\frac{\pi}{6}$ 6. $\frac{4\pi}{7}$

Exercice 6. Résoudre dans \mathbb{R} les équations suivantes, puis représenter les solutions sur le cercle unité :

(1)
$$2\sin(x) + 1 = 0$$

(2)
$$2\cos(x) + \sqrt{3} = 0$$

$$(3) \sin(3x) = \sin(x)$$

$$(4) \cos(2x) = \cos\left(x + \frac{\pi}{4}\right)$$

$$(5) 4\sin^2(x) - 1 = 0$$

(6)
$$\sin\left(x + \frac{\pi}{4}\right) = \cos(x)$$

(1)
$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left\{ -\frac{5\pi}{6} + 2k\pi , -\frac{\pi}{6} + 2k\pi \right\}$$

(2)
$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left\{ -\frac{5\pi}{6} + 2k\pi , \frac{5\pi}{6} + 2k\pi \right\}$$

(3)
$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left\{ 2k\pi , \frac{\pi}{4} + \frac{k\pi}{2} \right\}$$

(4)
$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left\{ \frac{\pi}{4} + 2k\pi , -\frac{\pi}{12} + \frac{2k\pi}{3} \right\}$$

(5)
$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left\{ -\frac{\pi}{6} + k\pi , \frac{\pi}{6} + k\pi \right\}$$

(6)
$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left\{ \frac{\pi}{8} + k\pi \right\}$$

Exercice 7. Résoudre dans $]-\pi,\pi]$ les inéquations suivantes :

(1)
$$2\sin(x) + \sqrt{2} < 0$$

(2)
$$\sqrt{2}\cos(x) \geqslant 1$$

(3)
$$4\cos^2(x) - 3 \le 0$$

(4)
$$2\cos^2(x) - 3\cos(x) - 2 \le 0$$

$$(1) \ 2\sin(x) + \sqrt{2} < 0 \iff \sin(x) < -\frac{\sqrt{2}}{2}$$

$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left[-\frac{3\pi}{4} + 2k\pi, -\frac{\pi}{4} + 2k\pi \right[$$

$$(2) \sqrt{2}\cos(x) \geqslant 1 \iff \cos(x) \geqslant -\frac{\sqrt{2}}{2}$$

$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left] -\frac{\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi \right[$$

(3)
$$4\cos^2(x) - 3 \leqslant 0 \iff -\frac{\sqrt{3}}{2} \leqslant \cos(x) \leqslant \frac{\sqrt{3}}{2}$$

$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{6} + k\pi, \frac{5\pi}{6} + k\pi \right[$$

$$(4) 2\cos^2(x) - 3\cos(x) - 2 \leqslant 0 \iff -\frac{1}{2} \leqslant \cos(x) \leqslant 2$$

$$\mathscr{S} = \bigcup_{k \in \mathbb{Z}} \left[-\frac{2\pi}{3} + 2k\pi, \frac{2\pi}{3} + 2k\pi \right[$$

Exercice 8. Montrer que pour tout $(a, b) \in \mathbb{R}^2$,

$$\cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b) = \cos(2a).$$

Soit $(a, b) \in \mathbb{R}^2$,

$$\cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b) = \cos((a+b) + (a-b))$$

= \cos(2a).

Exercice 9. 1. Montrer que pour tout $x \in \mathbb{R}^+$, $\sin x \leq x$.

- 2. Montrer que pour tout $x \in \mathbb{R}$, $\cos x \ge 1 \frac{x^2}{2}$.
- 1. On étudie la fonction $f(x) = \sin(x) x \text{ sur } \mathbb{R}^+$. f est dérivable sur \mathbb{R}^+ et pour tout $x \in \mathbb{R}^+$, $f(x) = \cos(x) 1 \le 0$. La fonction f est donc décroissante sur \mathbb{R}^+ et pour tout $x \in \mathbb{R}^+$, on a $f(x) \le f(0)$, c'est-à-dire $\sin(x) x \le 0$.
- 2. On étudie la fonction $f(x) = \cos(x) 1 + \frac{x^2}{2}$. f est deux fois dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = -\sin(x) + x$ et $f''(x) = -\cos(x) + 1 \ge 0$.

x	$-\infty$		0		$+\infty$
Signe de $f''(x)$		+		+	
Variations de f'			_0-		→
Signe de $f'(x)$		_	0	+	
Variations de f			* 0		,
Signe de $f(x)$		+	0	+	

Ainsi on a $f(x) \ge 0$ pour tout $x \in \mathbb{R}$, c'est-à-dire $\cos(x) \ge 1 - \frac{x^2}{2}$ pour tout $x \in \mathbb{R}$.