Feuille d'exercices n°4 Calcul algébrique

Propriétés de \(\subseteq \text{ et de } \propriétés

Exercice 1. Soient $(a_k)_{1 \le k \le n}$, $(b_k)_{1 \le k \le n}$ et $(z_{ij})_{1 \le i \le m}$ trois familles de $1 \le j \le n$ nombres complexes, $\lambda \in \mathbb{C}$ et $p \in \mathbb{N}$.

1. Les relations suivantes sont-elles vraies ou fausses en général?

(a)
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
,

(b)
$$\sum_{k=1}^{n} a_k b_k = \left(\sum_{k=1}^{n} a_k\right) \times \left(\sum_{k=1}^{n} b_k\right),$$

(c)
$$\sum_{k=1}^{n} \lambda a_k = \lambda \sum_{k=1}^{n} a_k,$$

(d)
$$\left(\sum_{k=1}^{n} a_k\right)^p = \sum_{k=1}^{n} a_k^p$$
.

- 2. Reprendre la question précédente en remplaçant tous les \sum par
- 3. On suppose que $(a_k)_{1 \le k \le n}$ est une famille de réels tels que $a_k > 0$ pour tout $k \in \{1, ..., n\}$. Transformer $\sum_{k=1}^{n} \ln(a_k)$.
- 4. Est-il vrai que $\prod_{i=1}^{m} \sum_{i=1}^{n} z_{ij} = \sum_{j=1}^{n} \prod_{i=1}^{m} z_{ij}$?

Sommes

Exercice 2. 1. Calculer la somme des n premiers entiers impairs.

- 2. Calculer la somme $S = 1 \times 2 + 2 \times 3 + 3 \times 4 + \cdots + (n-1) \times n$.
- 3. Calculer la somme $T = 1 \times n + 2 \times (n-1) + \dots + (n-1) \times 2 + n \times 1$.

Exercice 3. Calculer les sommes suivantes :

$$1. \sum_{n=1}^{3} \sum_{k=1}^{n} 1$$

1.
$$\sum_{n=1}^{3} \sum_{k=1}^{n} 1$$
 2. $\sum_{n=1}^{3} \sum_{k=1}^{n} k$ 3. $\sum_{n=1}^{3} \sum_{k=1}^{n} n$

3.
$$\sum_{n=1}^{3} \sum_{k=1}^{n} n$$

4.
$$\sum_{k=1}^{n} (2k+1)$$

$$5. \sum_{k=1001}^{2016} 3$$

4.
$$\sum_{k=1}^{n} (2k+1)$$
 5. $\sum_{k=1001}^{2016} 3$ 6. $\sum_{k=1}^{n} (6k^2 + 4k + 1)$

7.
$$\sum_{k=1}^{n} (-1)^k$$

8.
$$\sum_{k=1}^{n} 3^{2k}$$

7.
$$\sum_{k=1}^{n} (-1)^k$$
 8. $\sum_{k=1}^{n} 3^{2k}$ 9. $\sum_{k=1}^{n} \left(2^k + k^2 + 2\right)$

10.
$$\sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}}$$

11.
$$\sum_{i=0}^{n} i(i-1)$$

10.
$$\sum_{i=1}^{n+1} \frac{2^i}{3^{2i-1}}$$
 11.
$$\sum_{i=0}^{n} i(i-1)$$
 12.
$$\sum_{k=2}^{n} \ln\left(1 - \frac{1}{k^2}\right)$$

13.
$$\sum_{k=0}^{n} (n-k)$$

14.
$$\sum_{k=0}^{n} (k+1)$$

13.
$$\sum_{k=0}^{n} (n-k)$$
 14. $\sum_{k=0}^{n} (k+1)$ 15. $\sum_{1 \le i < j \le n} (i+j)$

Exercice 4. 1. Déterminer deux réels a et b tels que pour tout $k \in \mathbb{N}^{\star}$

$$\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}.$$

2. Soit $n \in \mathbb{N}^*$. En déduire la valeur de $\sum_{k=1}^n \frac{1}{k(k+1)}$.

Exercice 5. Soit $n \in \mathbb{N}$.

- 1. Simplifier de deux façons différentes la somme $\sum_{k=1}^{\infty} ((k+1)^2 k^2)$ et retrouver ainsi l'expression de $\sum_{k=0}^{n} k$ vue en cours.
- 2. Adapter cette méthode pour retrouver l'expression de $\sum k^2$.

Produits

Exercice 6. Démontrer les égalités suivantes :

1.
$$\prod_{k=1}^{n} (2k) = 2^{n} n!$$

$$2. \prod_{k=1}^{n} 3x^2 = 3^n x^{2n}$$

3.
$$\prod_{k=0}^{n} x^k = x^{\frac{n(n+1)}{2}}$$

1.
$$\prod_{k=1}^{n} (2k) = 2^{n} n!$$
2.
$$\prod_{k=1}^{n} 3x^{2} = 3^{n} x^{2n}$$
3.
$$\prod_{k=0}^{n} x^{k} = x^{\frac{n(n+1)}{2}}$$
4.
$$\prod_{k=1}^{n} \frac{2k+1}{2k-1} = 2n+1$$

5.
$$\prod_{k=2}^{n} \frac{k^2 - 1}{k} = \frac{(n+1)!}{2n}$$
 6.
$$\prod_{k=1}^{n-1} (2k+1) = \frac{(2n)!}{2^n n!}$$

6.
$$\prod_{k=1}^{n-1} (2k+1) = \frac{(2n)!}{2^n \, n!}$$

Factorielles et coefficients binomiaux

Exercice 7. Montrer sans récurrence que, pour tout $n \in \mathbb{N}^*$,

$$2^{n-1} \leqslant n! \leqslant n^{n-1}.$$

1. Quel est le coefficient de x^6 dans le développement de $(x+2)^8$, puis de $(x^2-3)^7$?

- 2. Quel est le coefficient de x^3y^7 dans le développement de $(x-y)^{10}$?
- 3. Quel est le coefficient de x^6y^7 dans le développement de $(2x-y)^{13}$?

Exercice 9. Soit $n \in \mathbb{N}$. À l'aide de la formule du binôme de Newton, calculer les expressions suivantes :

1.
$$\sum_{k=0}^{n} {n \choose k} 2^k 3^{n-k}$$
 2. $\sum_{k=0}^{n} {n \choose k} 2^k$

$$2. \sum_{k=0}^{n} \binom{n}{k} 2^{k}$$

$$3. \sum_{k=0}^{n} \binom{n}{k}$$

3.
$$\sum_{k=0}^{n} \binom{n}{k}$$
 4. $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$

Exercice 10. Soit $n \in \mathbb{N}^*$.

- 1. Soit $k \in [1, n]$. Montrer que $k \binom{n}{k} = n \binom{n-1}{k-1}$.
- 2. Calculer la somme $\sum_{k=1}^{n} k \binom{n}{k}$.

Récurrences

Exercice 11. Montrer que, pour tout $n \in \mathbb{N}$,

1.
$$\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

2.
$$\sum_{k=0}^{n} (-1)^k k^2 = (-1)^n \frac{n(n+1)}{2}$$

3.
$$\prod_{k=0}^{n} (2k+1) = \frac{(2n+1)!}{2^n n!}$$