Chapitre 2: Fonctions usuelles

Un chapitre, un mathématicien

Gottfried Wilhelm Leibniz (1646-1716)

Philosophe, juriste, diplomate et mathématicien allemand, Leibniz est l'une des grandes figures de l'âge classique. Né à Leipzig, il se forme d'abord en droit et en philosophie, mais développe rapidement une passion pour les sciences et les mathématiques.

En parallèle à Newton, il met au point le calcul différentiel et intégral, en introduisant une notation (dx, dy, \int) qui reste encore aujourd'hui la plus utilisée.

C'est Leibniz qui, en 1692, emploie pour la première fois le terme \ll fonction \gg pour désigner des grandeurs

associées à une courbe, comme la pente d'une tangente, l'abscisse ou l'ordonnée d'un point. Cette idée marque une étape essentielle : elle amorce la formalisation de la dépendance entre variables, qui sera ensuite généralisée par Euler et Dirichlet.

1 Fonctions logarithmes

Définition. On appelle **logarithme népérien** et on note la la primitive nulle en 1 de la fonction

$$\begin{array}{ccc} \mathbb{R}^{+\star} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{x} \end{array}.$$

Proposition. Pour tout $(x,y) \in (\mathbb{R}^{+\star})^2$ et tout $n \in \mathbb{Z}$,

$$\ln(xy) = \ln(x) + \ln(y) \qquad \ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$
$$\ln\left(\frac{1}{x}\right) = -\ln(x) \qquad \ln(x^n) = n\ln(x)$$

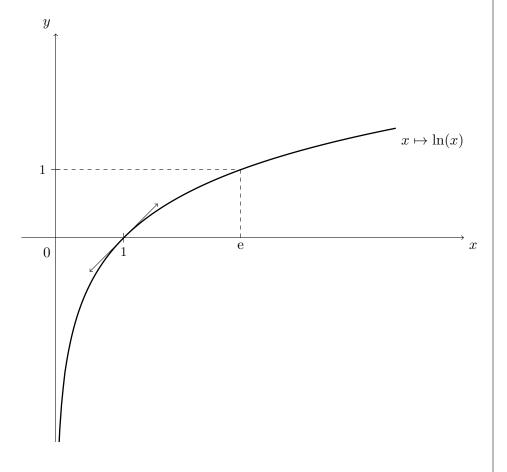
Proposition. 1. La fonction ln est dérivable et pour tout $x \in \mathbb{R}^{+\star}$

$$\ln'(x) = \frac{1}{x}.$$

$$2. \quad \lim_{x \to +\infty} \ln(x) = +\infty \quad \text{et} \quad \lim_{x \to 0^+} \ln(x) = -\infty \ .$$

Proposition. L'équation $\ln(x)=1$ admet une unique solution notée e :

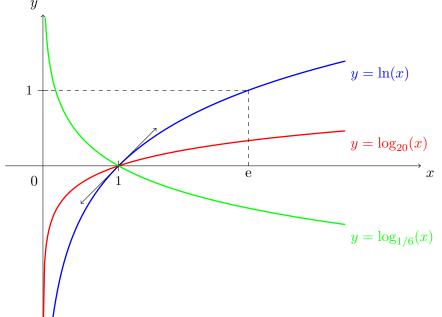
$$ln(e) = 1.$$



Définition. Pour tout $a \in \mathbb{R}^{+\star} \setminus \{1\}$, on appelle fonction logarithme en base a, la fonction

$$\log_a : \mathbb{R}^{+\star} \to \mathbb{R}$$
$$x \mapsto \frac{\ln(x)}{\ln(a)}.$$

Pour a = 10, cette fonction est aussi notée Log.



2 Fonctions exponentielles

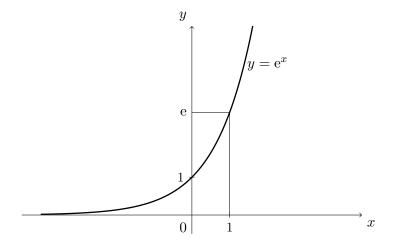
Définition. On appelle fonction exponentielle la réciproque de la fonction ln, et on la note exp. L'image d'un réel x par cette fonction est notée e^x ou $\exp(x)$.

$$\forall x \in \mathbb{R}, \qquad \ln(\exp(x)) = x$$

$$\forall x \in \mathbb{R}^{+\star}, \qquad \exp(\ln(x)) = x$$

Proposition. Pour tout $(x,y) \in \mathbb{R}^2$ et tout $n \in \mathbb{Z}$,

$$\exp(x+y) = \exp(x) \exp(y) \qquad \exp(x-y) = \frac{\exp(x)}{\exp(y)}$$
$$\exp(-x) = \frac{1}{\exp(x)} \qquad \exp(nx) = (\exp(x))^n$$



Proposition. 1. La fonction exp est dérivable et

pour tout
$$x \in \mathbb{R}$$
, $\exp'(x) = \exp(x)$.

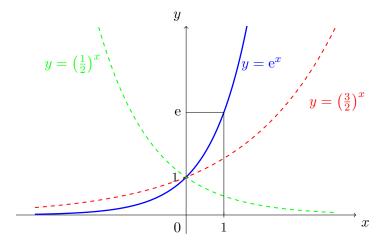
2.
$$\lim_{x \to -\infty} e^x = 0$$
 et $\lim_{x \to +\infty} e^x = +\infty$.

Définition. Soit $a \in \mathbb{R}^{+\star}$. On appelle fonction exponentielle en base a la fonction

$$f: \mathbb{R} \to \mathbb{R}^{+\star}$$

 $x \mapsto a^x = e^{x \ln(a)}.$

Pour tout $x \in \mathbb{R}$, $f'(x) = \ln(a)a^x$.



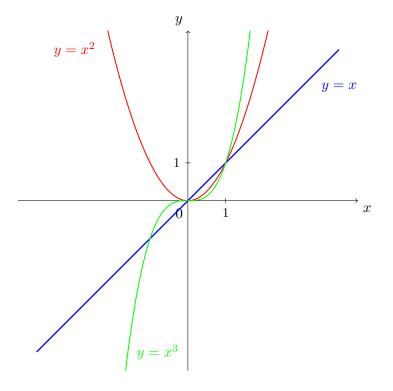
3 Fonctions puissances

3.1 Exposant entier naturel n

Ce sont les fonctions définies sur $\mathbb R$ par

$$f_n(x) = x^n = \underbrace{x \times \dots \times x}_{n \text{ fois}},$$

où n est un entier naturel.



Proposition. Pour tout $(n,m) \in \mathbb{N}^2$ et tout $(x,y) \in \mathbb{R}^2$, on a

$$(x \cdot y)^n = x^n \cdot y^n$$
 ; $x^{n+m} = x^n \cdot x^m$ et $(x^n)^m = x^{n \cdot m}$.

Proposition. Soit $n \in \mathbb{N}$. La fonction f_n est dérivable et

pour tout
$$x \in \mathbb{R}$$
, $f'_n(x) = nx^{n-1}$.

Remarque. • Lorsque n est pair, la fonction $x \mapsto x^n$ est une fonction paire. Sa courbe représentative est symétrique par rapport à l'axe des ordonnées.

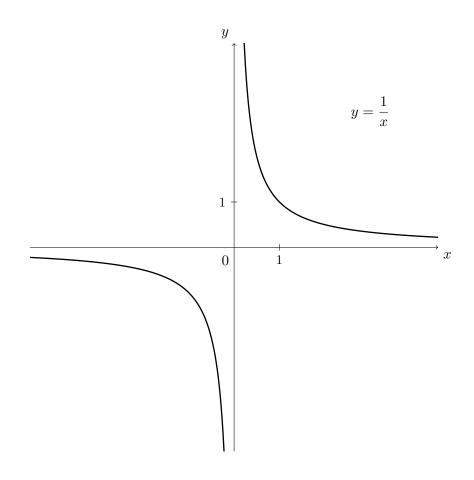
• Lorsque n est impair, la fonction $x \mapsto x^n$ est une **fonction impaire**. Sa courbe représentative est symétrique par rapport à l'origine du repère.

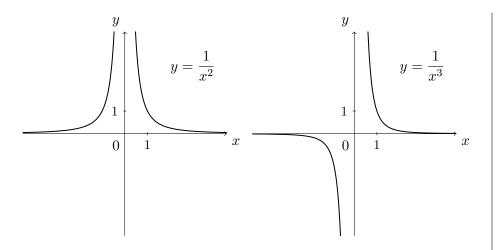
3.2 Exposant entier négatif -n

Ce sont les fonctions définies sur \mathbb{R}^* par :

$$f_{-n}(x) = x^{-n} = \frac{1}{x^n} = \frac{1}{f_n(x)},$$

où n est un entier naturel.





Proposition. Pour tout $n \in \mathbb{N}$ et tout $(x, y) \in \mathbb{R} \times \mathbb{R}^*$, on a

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n} \ .$$

Proposition. Soit $n \in \mathbb{N}^*$. La fonction f_{-n} est dérivable et pour tout $x \in \mathbb{R}^*$

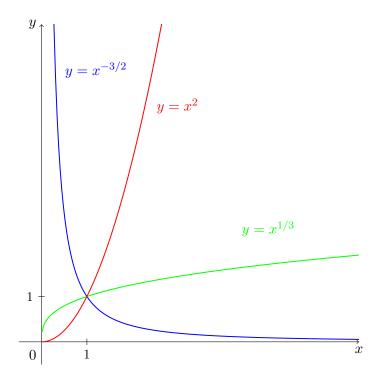
$$f'_n(x) = -nx^{-(n+1)} = -n\frac{1}{x^{n+1}}$$
.

3.3 Exposant réel a

Ce sont les fonctions définies sur $\mathbb{R}^{+\star}$ par

$$f_a(x) = e^{a \ln x}.$$

Pour tout $a \in \mathbb{R}$ et tout $x \in \mathbb{R}^{+\star}$, on note x^a le réel $e^{a \ln x}$.



Ainsi, par définition même, on a

Pour tout $x \in \mathbb{R}^{+\star}$ et tout $a \in \mathbb{R}$, $\ln(x^a) = a \ln(x)$, Pour tout $x \in \mathbb{R}$ et tout $a \in \mathbb{R}$, $(e^x)^a = e^{a \cdot x}$.

Proposition. Pour tout $(a,b) \in \mathbb{R}$ et tout $(x,y) \in (\mathbb{R}^{+\star})^2$, on a

$$(x \cdot y)^a = x^a \cdot y^a$$
 ; $x^{a+b} = x^a \cdot x^b$ et $(x^a)^b = x^{a \cdot b}$.

Proposition. Soit $a \in \mathbb{R}$. La fonction f_a est dérivable et pour tout $x \in \mathbb{R}^{+\star}$

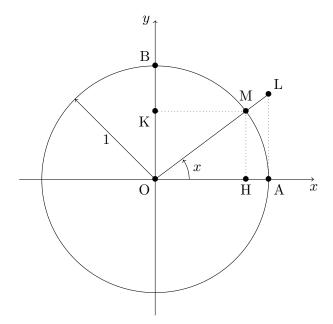
$$f_a'(x) = ax^{a-1}.$$

4 Fonctions trigonométriques

4.1 Présentation

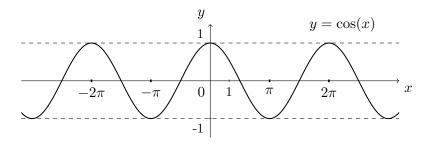
Soit M un point du cercle $\mathcal C$ de centre O et de rayon 1. On construit les points H et K projections orthogonales respectives de M sur les droites (OA) et (OB), et le point L intersection, si elle existe, de la droite (OM) et de la perpendiculaire à (OA) passant par A. Si x désigne une mesure de l'angle $(\overrightarrow{OA}, \overrightarrow{OM})$, on sait que

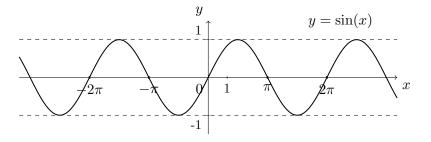
$$\cos(x) = \overline{OH} \quad \sin(x) = \overline{OK} \quad \tan(x) = \frac{\sin(x)}{\cos(x)} = \overline{AL}$$

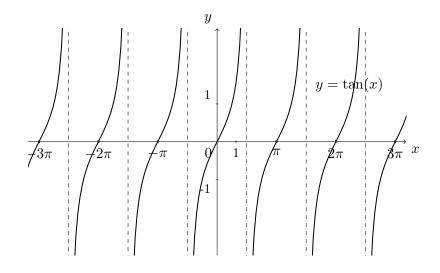


Remarque. $\tan(x)$ existe si et seulement si L existe, c'est-à-dire si et seulement si $M \not\in (OB)$.

4.2 Représentations graphiques







4.3 Angles remarquables

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\tan(x)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	×	0

4.4 Dérivées

Pour tout $x \in \mathbb{R}$,

$$\cos'(x) = -\sin(x)$$
 et $\sin'(x) = \cos(x)$.

Pour tout $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$,

$$\tan'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$
.

4.5 Propriétés élémentaires

Que l'on retrouve en dessinant simplement un cercle trigonométrique. Pour tout $x \in \mathbb{R}$,

$$\cos(-x) = \cos(x) \qquad \sin(-x) = -\sin(x)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x) \qquad \sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin(x) \qquad \sin\left(\frac{\pi}{2} + x\right) = \cos(x)$$

$$\cos(\pi - x) = -\cos(x) \qquad \sin(\pi - x) = \sin(x)$$

$$\cos(\pi + x) = -\cos(x) \qquad \sin(\pi + x) = -\sin(x)$$

4.6 Formulaire

Dans le formulaire qui suit, a et b sont deux réels. On ne s'intéresse pas aux domaines de définition des fonctions : les formules ne sont donc valables que lorsqu'elles ont un sens.

$$\cos^2(a) + \sin^2(a) = 1$$

Formules d'addition

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

Formules de duplication

$$\cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$
$$\sin(2a) = 2\sin(a)\cos(a)$$
$$\tan(2a) = \frac{2\tan(a)}{1 - \tan^2(a)}$$

Formules de factorisation

$$\begin{array}{rcl} \cos(p) + \cos(q) & = & 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \\ \cos(p) - \cos(q) & = & -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) \\ \sin(p) + \sin(q) & = & 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right) \\ \sin(p) - \sin(q) & = & 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right) \end{array}$$