Chapitre 3: Pratique calculatoire et fonctions

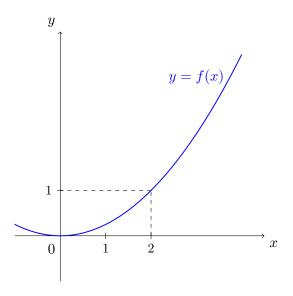
1 Calcul de limites

1.1 Définitions

a. Limite d'une fonction en un point

Définition. (Limite finie en un point) Dire qu'une fonction f a pour limite ℓ en a signifie que tout intervalle ouvert contenant ℓ , contient toutes les valeurs de f(x) pour x assez proche de a. On note alors :

$$\lim_{x \to a} f(x) = \ell.$$



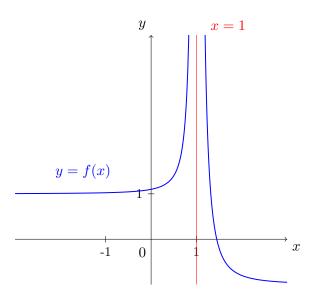
Ici

Définition. (Limite infinie en un point) Dire qu'une fonction f a pour limite $+\infty$ en a signifie que tout intervalle M; $+\infty$ contient toutes les valeurs de f(x) pour x assez proche de a. On note alors :

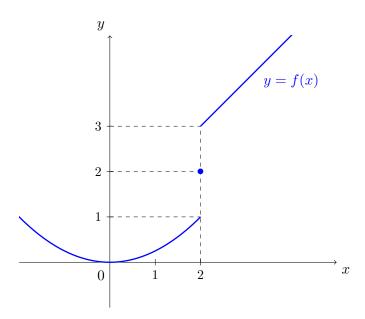
$$\lim_{x \to a} f(x) = +\infty.$$

La droite d'équation x = a est appelée **asymptote verticale** à \mathscr{C}_f .

Remarque. On définit de manière similaire $\lim_{x\to a} f(x) = -\infty$.



ci



Ici

.....

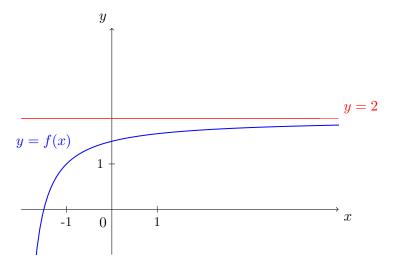
.....

b. Limite d'une fonction à l'infini

Définition. (Limite finie à l'infini) Dire qu'une fonction f a pour limite ℓ en $+\infty$ signifie que tout intervalle ouvert contenant ℓ , contient toutes les valeurs de f(x) pour x assez grand. On note alors :

$$\lim_{x \to +\infty} f(x) = \ell.$$

La droite d'équation $y = \ell$ est appelée **asymptote horizontale** à \mathscr{C}_f .

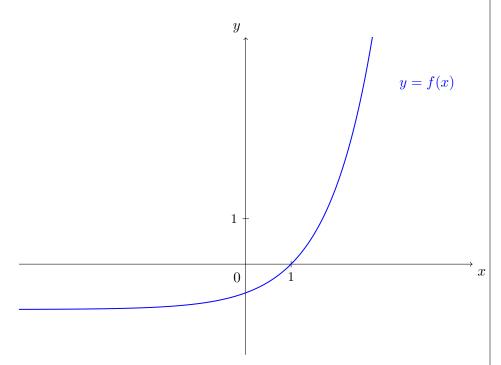


Ici

Remarque. On définit de manière similaire $\lim_{x\to -\infty} f(x) = \ell.$

Définition. (Limite infinie à l'infini) Dire qu'une fonction f a pour limite $+\infty$ en $+\infty$ signifie que tout intervalle M, $+\infty$ contient toutes les valeurs de f(x) pour x assez grand. On note alors :

$$\lim_{x \to +\infty} f(x) = +\infty.$$



Remarque. On définit de manière similaire

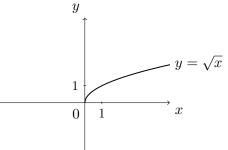
$$\lim_{x\to -\infty} f(x) = +\infty \;, \quad \lim_{x\to +\infty} f(x) = -\infty \quad \text{ et } \quad \lim_{x\to -\infty} f(x) = -\infty.$$

Limites usuelles

Pour tout $n \in \mathbb{N}^*$,

$$\lim_{x \to +\infty} x^n = +\infty \quad \text{et} \quad \lim_{x \to -\infty} x^n = \begin{cases} -\infty & \text{si } n \text{ est impair} \\ +\infty & \text{si } n \text{ est pair} \end{cases}$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$



$$\lim_{x\to -\infty}\!\mathrm{e}^x=0$$

$$\lim_{x\to +\infty} \mathrm{e}^x = +\infty$$

$$\lim_{x\to 0^+} \ln x = -\infty$$

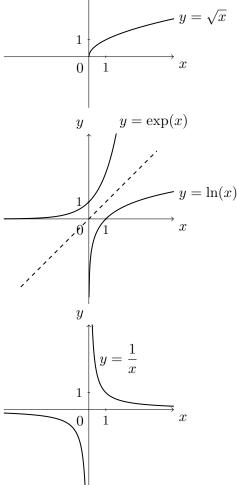
$$\lim_{x\to +\infty} \ln x = +\infty$$

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$



1.3 Opérations sur les limites

a. Limite d'une somme

Le tableau suivant indique la limite de la fonction f+g en a, $\lim_{x\to a} f(x)+g(x),$ lorsqu'elle existe :

$\lim_{x \to a} g(x)$ $\lim_{x \to a} f(x)$	$\ell \in \mathbb{R}$	$+\infty$	$-\infty$
$\ell' \in \mathbb{R}$	$\ell + \ell'$	+∞	$-\infty$
$+\infty$	+∞	$+\infty$	F.I.
$-\infty$	$-\infty$	F.I.	$-\infty$

Exercice 1. Déterminer, si possible, les limites suivantes :

$$\lim_{x \to +\infty} \sqrt{x} + \frac{1}{x} = \dots$$

$$\lim_{x \to -\infty} e^x + x = \dots$$

$$\lim_{x \to +\infty} e^x + x = \dots$$

$$\lim_{x \to -\infty} x^2 + x^3 = \dots$$

b. Limite d'un produit

Le tableau suivant indique la limite de la fonction $f \times g$ en a, $\lim_{x \to a} f(x) \times g(x)$, lorsqu'elle existe :

$\lim_{x \to a} g(x)$ $\lim_{x \to a} f(x)$	$\ell > 0$	$\ell < 0$	0	$+\infty$	$-\infty$
$\ell' > 0$	<i>ℓℓ'</i>	$\ell\ell'$	0	$+\infty$	$-\infty$
$\ell' < 0$	$\ell\ell'$	$\ell\ell'$	0	$-\infty$	$+\infty$
0	0	0	0	F.I.	F.I.
+∞	$+\infty$	$-\infty$	F.I.	$+\infty$	$-\infty$
$-\infty$	$-\infty$	$+\infty$	F.I.	$-\infty$	$+\infty$

Exercice 2. Déterminer, si possible, les limites suivantes :

$$\lim_{x \to -\infty} x^2 + x = \dots$$

$$\lim_{x \to +\infty} x - \sqrt{x} = \dots$$

$$\lim_{x\to 0} \frac{1}{x^2} \sin(x) = \dots$$

c. Limite d'un quotient

On suppose que $\lim_{x\to a}g(x)\neq 0$. Alors la fonction $\frac{f}{g}$ est définie au voisinage de a. Le tableau suivant indique la limite de la fonction $\frac{f}{g}$, $\lim_{x\to a}\frac{f(x)}{g(x)}$, lorsqu'elle existe :

$\lim_{x \to a} g(x)$ $\lim_{x \to a} f(x)$	$\ell > 0$	$\ell < 0$	0	$+\infty$	$-\infty$
$\ell' > 0$	$\frac{\ell}{\ell'}$	$\frac{\ell}{\ell'}$	0	$+\infty$	$-\infty$
$\ell' < 0$	$\frac{\ell}{\ell'}$	$\frac{\ell}{\ell'}$	0	$-\infty$	$+\infty$
$+\infty$	0	0	0	F.I.	F.I.
$-\infty$	0	0	0	F.I.	F.I.

Exercice 3. Déterminer, si possible, les limites suivantes :

$$\lim_{x \to -1} \frac{2x-1}{(x+1)^2} = \dots$$

$$\lim_{x \to +\infty} \frac{2x+1}{5x-3} = \dots$$

d. Limite d'une fonction composée

Définition. (Fonction composée) Soient I, J et K trois intervalles de \mathbb{R} . Soient $f:I\to J$ et $g:J\to K$ deux fonctions réelles. On définit la composée de f par g, notée $g\circ f$, par

$$\forall x \in I, \quad (g \circ f)(x) = g(f(x)).$$

On obtient une nouvelle fonction $g \circ f : I \to K$.

Exercice 4. Déterminer l'expression des fonctions composées suivantes :

1. Si
$$f(x) = \frac{2x-1}{x+1}$$
 et $g(x) = e^x$, alors

$$f \circ g(x) = \dots$$

2. Si
$$f(x) = x^2$$
 et $g(x) = \sqrt{x}$, alors

3. Si
$$f(x) = \cos(x)$$
 et $g(x) = 2x - 3$, alors

$$g \circ f(x) = \dots$$

Théorème. (Limite d'une fonction composée) Soient $a, b, c \in \overline{\mathbb{R}}$. Si Alors $\lim_{x \to \mathbf{a}} g \circ f(x) = \mathbf{c}.$ Exercice 5. Déterminer les limites suivantes : $\lim_{x \to +\infty} \sin\left(\frac{1}{x}\right), \quad \lim_{x \to +\infty} \cos\left(\frac{1}{\ln(x)}\right) \quad \text{et} \quad \lim_{x \to +\infty} \sqrt{e^x + x^2}.$ Théorèmes de comparaison **Théorème.** (Passage à la limite dans une inégalité) Soit $a \in \overline{\mathbb{R}}$ et f, gdeux fonctions qui admettent des limites finies en a. Si $f(x) \leq g(x)$ au voisinage de a, alors $\lim_{x \to a} f(x) \leqslant \lim_{x \to a} g(x).$ Remarque. Les inégalités strictes ne passent pas à la limite! Si g(x) au voisinage de a, alors

Théorème. (Théorème d'encadrement) Soient $a \in \overline{\mathbb{R}}$ et $\ell \in \mathbb{R}$. Si

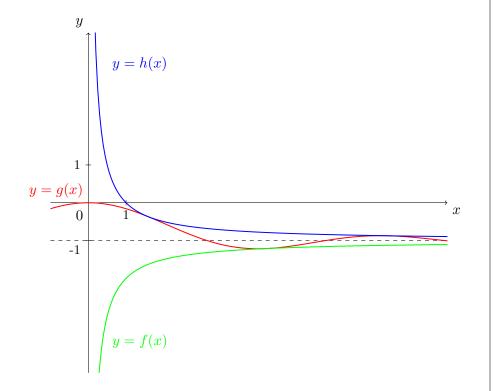
 $f(x) \leq g(x) \leq h(x)$ au voisinage de a

et

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \ell,$$

alors

$$\lim_{x \to a} g(x) = \ell.$$



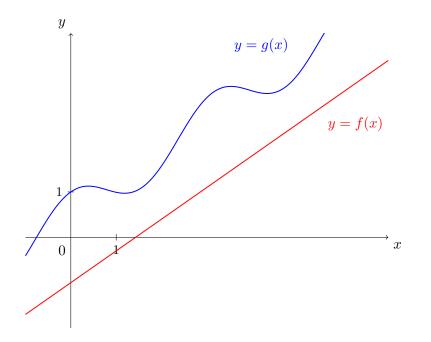
Ic	i		•	•	•	•		•	•	•				•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•		•	•	•		•				 •	•	•		•	•	•	•	•
•		 •			•						•	•			•				•		•			•			•					•		•		•			•	•	•			•	•	•				•	•	•	•		•	•

Exercice 6. Déterminer la	a limite de $f(x) =$	$\frac{\sin x}{x}$ en $+\infty$.

Théorème. (Théorème de comparaison) Soit $a \in \overline{\mathbb{R}}$.

On suppose que $f(x) \leq g(x)$ au voisinage de a.

- Si $\lim_{x \to a} f(x) = +\infty$, alors $\lim_{x \to a} g(x) = +\infty$.
- Si $\lim_{x \to a} g(x) = -\infty$, alors $\lim_{x \to a} f(x) = -\infty$.



lci

Exercice 7. Déterminer la limite de $f(x) = x + \cos(x)$ en $+\infty$.	

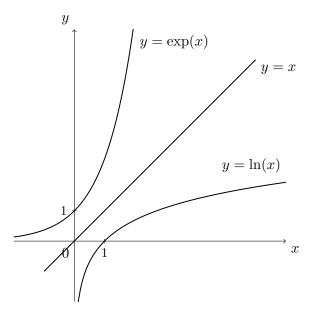
1.5 Croissances comparées

Au voisinage de l'infini, « les exponentielles l'emportent sur les puissances, qui l'emportent sur les logarithmes ».

Pour tout $n \in \mathbb{N}^*$,

$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0 \qquad \lim_{x \to +\infty} \frac{x^n}{e^x} = 0$$

Remarque. Ce théorème est encore vrai si l'on remplace n par α un réel strictement positif.



$$\lim_{x \to 0} \, x \times \ln x \,\, = 0$$

 $D\'{e}monstration.$

Exercice 8.	Déterminer, si possibl	lle,
	$\lim_{x \to +\infty} e^x - \ln(x)$	et $\lim_{x \to +\infty} e^x - x$.

1.6 Quelques limites à connaître

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad \lim_{x \to 0} \frac{\cos(x) - 1}{x^2} = -\frac{1}{2}$$

2 Calcul de dérivées

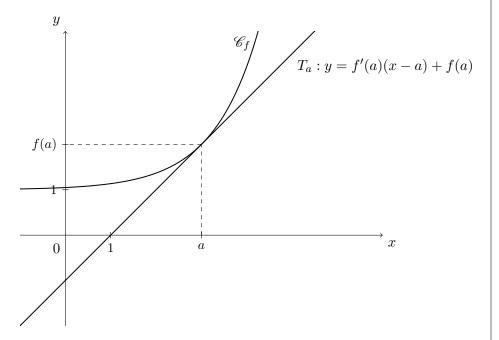
2.1 Taux d'accroissement. Nombre dérivé. Tangente.

Définition. f est dérivable en a si et seulement si $\frac{f(x) - f(a)}{x - a}$ admet une limite finie lorsque x tend vers a, Dans ce cas, le **nombre** dérivé de f en a est

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Équation de la tangente à \mathcal{C}_f au point d'abscisse a:

$$y = f'(a)(x - a) + f(a).$$



2.2 Dérivées des fonctions usuelles

Fonction	Dérivée
$f(x) = x^n, n \in \mathbb{N}^*$	$f'(x) = nx^{n-1}$
$f(x) = \frac{1}{x^n}, n \in \mathbb{N}^*$	$f'(x) = -\frac{n}{x^{n+1}}$
$f(x) = x^n, n \in \mathbb{Z}^*$	$f'(x) = nx^{n-1}$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = \ln(x)$	$f'(x) = \frac{1}{x}$
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \sin(x)$	$f'(x) = \cos(x)$
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$
$f(x) = \tan(x)$	$f'(x) = \frac{1}{\cos(x)^2}$

2.3 Dérivées et opérations

• Si u et v sont deux fonctions dérivables sur I, u+v est dérivable sur I et pour tout $x \in I$

$$[u(x) + v(x)]' = u'(x) + v'(x).$$

• Si u est dérivable sur I et si λ est un réel, λu est dérivable sur I et pour tout $x \in I$

$$[\lambda \times u(x)]' = \lambda \times u'(x).$$

• Si u et v sont deux fonctions dérivables sur $I, u \times v$ est dérivable sur I et pour tout $x \in I$

$$[u(x) \times v(x)]' = u'(x) \times v(x) + u(x) \times v'(x).$$

• Si u et v sont deux fonctions dérivables sur I et si v ne s'annule pas sur $I, \frac{u}{v}$ est dérivable sur I et pour tout $x \in I$

$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2}.$$

• Si u est dérivable sur I et si f est dérivable sur $u(I), \ f \circ u$ est dérivable sur I et pour tout $x \in I$

$$[f(u(x))]' = u'(x) \times f'(u(x)).$$

On déduit de cette dernière formule le tableau suivant :

Fonction	Dérivée
$u(x)^n, n \in \mathbb{Z}^*$	$nu'(x)u(x)^{n-1}$
$\sqrt{u(x)}$	$\frac{u'(x)}{2\sqrt{u(x)}}$
$\mathrm{e}^{u(x)}$	$u'(x)e^{u(x)}$
$\ln\left(u(x)\right)$	$\frac{u'(x)}{u(x)}$
$\sin\left(u(x)\right)$	$u'(x)\cos(u(x))$
$\cos(u(x))$	$-u'(x)\sin\left(u(x)\right)$

Ľ	xer																										
	f(x)	<i>x</i>) =	= (3x	_	5)	4	;	g	y(x)) =	= 1	$\int x$	2 -	+ :	r +	- 1	;		h(:	x) :	= 5	\sin	(2x)	: +	1).	
			`			,		ŕ		` '								,		`	_			`		,	
•		• • •			• •	• •		• •		• • •	• •	• •			• •	• • •	• • •	• • •	• • •	• • •		• •			• • •		•
•		• • •			• •	• •		• •		• • •	• •	• •			• •	• • •	• • •	• • •	• • •	• • •		• •			• • •		•
•		• • •			• •	• •		• •		• • •	• •	• •			• •	• • •	• • •	• • •	• • •	• • •		• •			• • •		•
•		• • •			• •	• •		• •			• •	• •		• • •	• •	• • •	• • •	• • •	• • •			• •			• • •		•
•		• • •			• •	• •		• •		• • •	• •	• •			• •	• • •	• • •	• • •	• • •	• • •		• •			• • •		•
٠		• • •			• •	• • •		• •			• •	• •			• •	• • •	• • •	• • •	• • •			• •			• • •		•
٠		• • •	• • •		• •	• •		• •		• • •	• •	• •		• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• •		• • •	• • •		•

3 Calcul de primitives

3.1 Définition et résultats

Définition. Soit f une fonction définie sur un intervalle I. Une fonction F est une primitive de f sur I, si et seulement si, elle est dérivable sur I et

$$\forall x \in \mathbb{R}, \quad F'(x) = f(x).$$

Théorème. Toute fonction continue sur un intervalle I admet des primitives sur I.

Théorème. Soit f une fonction continue sur un intervalle I et F une primitive de f sur I. Toute primitive de f sur I est de la forme $x \mapsto F(x) + C$, où $C \in \mathbb{R}$.

Théorème. Soit f une fonction continue sur un intervalle I. Soient $x_0 \in I$ et $y_0 \in \mathbb{R}$. Il existe une unique primitive F de f telle que $F(x_0) = y_0$.

3.2 Primitives des fonctions usuelles

Fonction	Primitives
$f(x) = x^n, n \in \mathbb{Z} \setminus \{-1\}$	$F(x) = \frac{x^{n+1}}{n+1} + C, C \in \mathbb{R}$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x) + C$
$f(x) = \frac{1}{2\sqrt{x}}$	$F(x) = \sqrt{x} + C$
$f(x) = e^x$	$F(x) = e^x + C$
$f(x) = \sin(x)$	$F(x) = -\cos(x) + C$
$f(x) = \cos(x)$	$F(x) = \sin(x) + C$

3.3 Primitives et opérations

- Si f et g sont continues sur I et si F et G sont des primitives sur I de f et g respectivement, F + G est une primitive de f + g sur I.
- Si f est continue sur I, si F est une primitive de f sur I et si λ est un réel, λF est une primitive de λf sur I.

• Soit u une fonction dérivable sur un intervalle I dont la dérivée u' est continue sur I, alors :

Fonction	Primitives
$f(x) = u'(x)u(x)^n, n \in \mathbb{Z} \setminus \{-1\}$	$F(x) = \frac{u(x)^{n+1}}{n+1} + C, C \in \mathbb{R}$
$f(x) = \frac{u'(x)}{u(x)}$	$F(x) = \ln(u(x)) + C$
$f(x) = \frac{u'(x)}{2\sqrt{u(x)}}$	$F(x) = \sqrt{u(x)} + C$
$f(x) = u'(x)e^{u(x)}$	$F(x) = e^{u(x)} + C$
$f(x) = u'(x)\sin(u(x))$	$F(x) = -\cos(u(x)) + C$
$f(x) = u'(x)\cos(u(x))$	$F(x) = \sin(u(x)) + C$

Exercice 10. Déterminer une primitive des fonctions suivantes :

1.
$$f(x) = x^3 - 2x^2 + 4x - 1$$
.....

.....

2.
$$f(x) = 2x(x^2 - 1)^3$$
.....

.....

3. $f(x) = (3x - 1)^4 \dots$ 4. $f(x) = \frac{2}{2x-3}$ 5. $f(x) = \frac{1}{4x+1}$ 6. $f(x) = \frac{1}{\sqrt{x+4}}$

	•		• •	•		•	•		•	•	 •	•	 •	•	 • •	•	•	 •	•	•	 •	•	 •	•	 •	•	 •	•		•	•	 . •	•	•	 •	•	 •	•
7.	f	<i>(a</i>	;)	=	= (e^4	x	+	1				•	•		•					•			•	 •				•	•			•					
				•		•	•		•	•							•		•			•	 •			•		•		•	•	 	•					•
				•		•			•		 •				 			 	•			•	 		 			•			•	 . .	•			•	 •	
															 			 					 		 							 . .						

3.4 Primitives et intégrales

Soit f une fonction continue sur l'intervalle [a, b].

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

où F est une primitive de f.

Exercice 11. Calculer les intégrales suivantes :

$$I = \int_{-1}^{2} (x^2 - 4x + 3) dx$$
 et $J = \int_{0}^{2} \frac{2x}{x^2 + 1} dx$.

.....

.....

.....

.....

 Théorème. (Intégration par parties) Soient u et v deux fonctions dérivables sur $[a;b]$,
 $\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx.$
 Exercice 12. À l'aide d'une intégration par parties, détermine
 $I = \int_0^1 x e^x dx.$